• 684632739 (Gijón) | 637613488 (Oviedo) | 637613488 (Avilés)

  • info@neurofuncion.com

Medicina Neurológica

ENFERMEDAD DE PARKINSON AVANZADA: UN CONCEPTO DIFICIL DE ASUMIR

ENFERMEDAD DE PARKINSON AVANZADA: UN CONCEPTO DIFICIL DE ASUMIR 500 400 Elena Herrera Gómez

Renée Ribacoba Montero. Especialista de Neurología

Esta es la pregunta del millón en la consulta diaria. El paciente preocupado por su futuro lo pregunta con frecuencia a medida que su “luna de miel” se va agotando. Pero de verdad os digo que  la respuesta es difícil. Evidentemente algo va cambiando con el paso del tiempo, porque se trata de una enfermedad neurodegenetativa compleja; pero ¿qué cambia?, ¿en que áreas del cerebro se producen esos cambios?, y sobre todo: ¿por qué?. Si tenemos estas respuestas podríamos mejorar el control de la enfermedad.

Realmente en esta enfermedad están implicados otros neurotrasmisores cerebrales además de la dopamina como la serotonina, la acetilcolina, el sistema noradrenérgico, los canabinoides, etc y se están desarrollando nuevas tecnologías de imagen funcional metabólica y de resonancia magnética que permiten ver cambios funcionales en otras áreas o redes no exploradas previamente in vivo. Se trata de trabajos de investigación con un presupuesto caro, que se realizan en pequeños grupos de pacientes  analizando problemas concretos  y que aunque van arrojando luz sobre la posible fisiopatología de determinados síntomas aún no pueden ser considerados marcadores evolutivos de la enfermedad y necesitan confirmarse en cohortes mas amplias antes de  poder considerarlos  biomarcadores evolutivos.

Fijaros que nos enfrentamos a una enfermedad que evoluciona diferente en el tiempo entre los distintos casos y que cuando la diagnosticamos ya se ha  instaurado en el troncoencéfalo y en los ganglios basales. Para hablar de progresión o avance de la misma, en realidad deberíamos determinar esos marcadores al inicio y poder valorarlos progresivamente a lo largo de la evolución

En la práctica clínica, a medida que transcurre el tiempo todos somos conscientes  de que van apareciendo cosas que no estaban en el momento del diagnóstico. En ese sentido, un grupo de 240 neurólogos pertenecientes al Grupo de Estudios de Trastornos de Movimiento de la Sociedad Española de Neurología, liderado magníficamente por la Dra Rosario Luquín y colaboradores, participamos en la elaboración de un documento clínico pionero que nos puede ayudar para definir los cambios producidos a lo largo del tiempo en la enfermedad y que nos alertarían para ayudarnos a definir una enfermedad de  Parkinson avanzada (EPA).

Los síntomas que se tuvieron en cuenta para definir la enfermedad avanzada fueron además de la incapacidad que requiere ayuda, otros que no deben estar presentes al inicio de la enfermedad como las caídas, el congelamiento de la marcha, el ortostatismo, las alucinaciones sin insight, el deterioro cognitivo leve, la demencia  o  la disfagia. El grupo de Consenso estableció tres niveles de relevancia: a) EPA Definitiva. b) EPA Probable y c) EPA  Posible. Si se cumplían 2 condiciones del grupo b pasarían al conjunto de EPA Definitiva y en caso de cumplirse 2 características del grupo c, el paciente pasaría a considerarse un caso de EPA probable. De manera, que la aparición y el empeoramiento de los síntomas no motores, en opinión de los especialistas, son mas definitivos a la hora de considerar el avance de la enfermedad. Este documento no da respuesta al paciente que ya es perfectamente consciente de que su vida ha cambiado, Si que es útil para el especialista a la hora de definir el momento de entrar en determinadas terapias o de justificar la necesidad de soportes o solicitud de ayudas para los pacientes.

Y que sabemos hoy sobre estos síntomas. Por ejemplo, el congelamiento de la marcha es un fenómeno heterogéneo y altamente variable cuya fisiopatología sigue siendo un enigma. Hay evidencias que avalan que en su aparición influyen factores motores, afectivos y cognitivos. Quizás en un futuro, el estudio con paradigmas funcionales de resonancia magnética puedan arrojar alguna luz sobre su origen y su relación con la EP ya que es un signo clínico que efectivamente, puede aparecer en la EPA, pero, también puede desarrollarse en otras enfermedades neurodegenerativas

Otro problema diferente se plantea con el deterioro cognitivo leve y las alteraciones disejecutivas frontales en particular, que pueden objetivarse al inicio en un porcentaje no despreciable de pacientes y se manifiestan como tendencia a la inflexibilidad, alteraciones en la planificación, etc. Estos trastornos se relacionan con un déficit de la vía dopaminérgica. Por el contrario, la conversión a demencia que puede observarse tardíamente, tiene mas que ver con el cúmulo de proteínas en otras áreas corticales, la neuroinflamación o la coomorbilidad de otras patologías asociadas a la edad. Es conocido que los fallos del sistema colinérgico pueden empeorar el déficit cognoscitivo y hacer mas severa la demencia. Hay varios estudios que demuestran estos cambios funcionales metabólicos en el sistema colinérgico que también interviene en el desarrollo de ilusiones y alucinaciones. Sin embargo, todos los estudios de imagen funcional nos hablan de un alteración en el momento en que se realiza el corte en un grupo de pacientes previamente seleccionados, pero no tenemos constancia de la evolución de los mismos a lo largo del tiempo.

Saber si la enfermedad está avanzando no es solo una preocupación del paciente. Los investigadores necesitan un parámetro medible y accesible que permita probar un fármaco y asegurar que con su uso la enfermedad se detiene o se enlentece. En este sentido, en 2015 Ofori y colaboradores dieron un paso adelante, empleando Resonancia Magnética de difusión bitensor. Ellos demostraron que los niveles de agua libre estaban elevados en la sustancia negra posterior (SNP) de los pacientes parkinsonianos con respecto a los controles sanos. Esto les animó a realizar seguimiento de un pequeño grupo de pacientes de novo siguiéndolos durante un año y no solo confirmo los hallazgos previos, además,  determinó que la elevación en el agua libre basal de SNP predecía cambios en la bradicinesia y las escalas cognitivas. Finalmente en 2017 Burcio y Ofori  publicaron un seguimiento a 4 años, donde demostraron que el agua libre seguía aumentando en la SNP de los parkinsonianos durante todo el estudio, (fig. 1) sin alterarse en los controles sanos. Además durante el primer y segundo año le elevación predecía el empeoramiento de la escala de Hoehn & Yahr, por tanto, parece que la elevación del agua libre en la SNP podría ser un marcador de progresión de imagen válido (se trata de hacer una resonancia), que podría usarse en ensayos clínicos para valorar terapias modificadoras de la enfermedad.

El interés objetivo de dar respuesta a la pregunta de los pacientes es poderles ofrecer algún parámetro accesible  que nos muestre evolución en el tiempo, de manera que el uso de terapias específicas demuestren que el proceso neurodegenerativo se interrumpe.

Tractos descendentes afectados por un ictus

Tractos descendentes afectados por un ictus 320 240 FisioAso

A grandes rasgos, cuatro son las vías descendentes o motoras (corticoespinal, retículoespinal, rubroespinal y vestíbuloespinal) sobre las cuales, nuestro Sistema Nervioso Central manda sus señales al resto de la periferia, para ejecutar a su «antojo», las órdenes activas sobre las cuales nos dirigimos para cambiar nuestro mundo, tanto para ser un medio como un fin, el movimiento.

Y es que las funciones organizativas de cada una de ellas pueden ser interesantes a la hora de rehabilitar una disfunción en el movimiento, ocasionado por una lesión de una de las vías que implican una clínica específica ya investigada. Muchas veces, por la situación concreta en la que se ha desarrollado un ictus o un Daño Cerebral Adquirido (DCA), siendo ésta una zona de paso de muchas vías descendentes (como por ejemplo, la muy sufrida cápsula interna, zona de paso de varias vías descendentes), cabe destacar que existe una variabilidad clínica muy relevante, ya que la afectación al ser una «zona de paso», atribuye daño de manera aleatoria y muy poco presentada en patrones.

Este interesante artículo (1), donde desarrollan el estudio específico de la organización motora de la mano de los macacos, a través de la provocación de una lesión neurológica de un tracto descendente, concretamente mediante lesiones quirúrgicas bilaterales del tracto corticoespinal (el más grande y más importante de las vías motoras), examinaron cuál era la función principal de éste. Tras dicha lesión, inmediatamente después de la lesión, los animales mostraron una parálisis flácida, pero lo interesante viene después. En los días siguientes recuperaron considerablemente la función motora, de tal manera que podían trepar y correr alrededor de sus jaulas casi con total normalidad. Por contraste con esta función locomotora recuperada, los movimientos de motricidad fina de la mano, permanecieron muy deteriorados, y nunca lograron recuperarlos, siendo éstos el sello distintivo de la destreza manual de los primates.
Para investigar más a fondo cuál de las estructuras permiten la recuperación de la función de la mano en ausencia del tracto corticoespinal, Lawrence & Kuypers (1968b) sometieron a los animales recuperados a lesiones quirúrgicas más selectivas de las vías motoras restantes. Cortaron las vías laterales del tronco cerebral (que comprenden principalmente el tracto rubrospinal) y éstas dieron como resultado una pérdida de agarre con la mano, que nunca se recuperó; los movimientos locomotores brutos (los contrarios a la motricidad fina) estaban relativamente poco afectados. Por el contrario, el corte de el sistema descendente medial del tronco cerebral (principalmente reticuloespinal y vestibuloespinal) produjeron un deterioro severo de los movimientos brutos, pero los animales se mantuvieron capaces de agarrar la comida si se les colocaba cerca de la mano.

Sacando una primera conclusión, la motricidad fina de la mano tiene como componentes más importantes el tracto corticoespinal (Limón, 1993; Schieber, 2004 cf. Schieber, 2011)(movimientos de los dedos independientes y selectivos) así como el rubroespinal (Sasaki et al. 2004)(inervando musculatura más distal).

Por otro lado, el papel del tracto reticuloespinal se ha estudiado intensamente en la marcha, la actuación de los ajustes posturales y en los alcances, verificando su implicación en éstos pero no de manera exclusiva, ya que están coordinados con las salidas de los tractos corticoespinales y rubrosespinales.

Debido a que los conceptos actuales enfatizan el papel de la estimulación reticuloespinal a la hora de realizar los alcances y los movimientos gruesos del aparato locomotor, los estudios que tratan de asignar las salidas de la formación reticular en primates generalmente han ignorado los músculos que actúan sobre los dígitos (Davidson & Buford, 2004, 2006; Davidson et al., 2007). Como comentábamos anteriormente, a los macacos que se les lesionaba el tracto reticuloespinal, podían subir alrededor de sus jaulas, incluyendo el agarre de los barrotes de la jaula de tal manera, que podían soportar su peso corporal total. Otros estudios confirman que la formación reticular, al ser estimulada, podría provocar la actividad en los músculos que actúan alrededor de la muñeca. Además, el reflejo de sobresalto acústico – que es más probable que sea mediada a través del tracto reticuloespinal – puede producir la activación de los músculos intrínsecos de la mano cuando se facilita de forma anormal en los pacientes con hipereflexia (Brown et al 1991c.). Por último, Ziemann et al. (1999) informaron que la estimulación magnética transcraneal sobre la corteza motora primaria en sujetos humanos podría provocar respuestas en músculos de la mano ipsilateral. Las características de estas respuestas sugirieron que estaban mediadas a través de una vía del tronco cerebral (probablemente la reticuloespinal), activada a su vez por las proyecciones corticoreticulares.

Por tanto, en el momento que observemos una presentación clínica de una ausencia de control motor de la mano, y en referencia a la bibliografía expuesta, sería interesante intervenir en la estimulación de los tractos descendentes, donde por ejemplo, ante una muñeca que el paciente no puede estabilizar, el trabajo a través de ejercicios de enderezamiento, alcances o marcha, son interesantes para la búsqueda de esa vía reticuloespinal estimulada de por si, para elaborar un trabajo específico de ese tracto y su implicación en la muñeca. Lo mismo podemos observar en otro tipo de paciente, con presentación clínica de pérdida de movilidad selectiva en los dedos, donde un trabajo del tracto corticoespinal así como el rubroespinal, son más que interesantes para poder llegar a estimular esos dedos, como por ejemplo, trabajar el orbicular de los ojos junto con el de los labios (en una actividad que implique también el agarre de dedos, como pintarse los labios), para al menos estimular éstas vías descendentes.

 

Bibliografía:

(1) Kuypers HG , Fleming WR & Farinholt JW ( 1960 ). Descending projections to spinal motor and sensory cell groups in the monkey: cortex versus subcortex . Science 132 , 3840 .

(2) Lawrence DG & Kuypers HGJM ( 1968a ) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions . Brain 91 , 114 .

(3) Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol 2011 Dec 1;589(Pt 23):5603-5612.

(4) Lemon RN , Mantel GW & Muir RB ( 1986 ). Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey . J Physiol 381 , 497527 .

(5) Lemon RN ( 2008 ). Descending pathways in motor control . Annu Rev Neurosci 31 , 195218 .

(6) Sasaki S , Isa T , Pettersson LG , Alstermark B , Naito K , Yoshimura K , Seki K & Ohki Y ( 2004 ). Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation . J Neurophysiol 92 , 31423147 .

(7) Brown P , Day BL , Rothwell JC , Thompson PD & Marsden CD ( 1991a ) The effect of posture on the normal and pathological auditory startle reflex. J Neurol Neurosurg Psychiatry 54 , 892897 .

(8) Ziemann U , Ishii K , Borgheresi A , Yaseen Z , Battaglia F , Hallett M , Cincotta M & Wassermann EM ( 1999 ). Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles . J Physiol 518 , 895906 .

Generación de neuronas

Generación de neuronas 1900 1069 FisioAso

Nacemos con un número determinado de neuronas, y a medida que vamos creciendo, estas van muriendo, sin que se pueda renovar ninguna de ellas. Esto es lo que se ha ido creyendo a lo largo de la historia de la neurociencia, antes de que se hubieran podido estudiar en mayor profundidad, mediante los avances científicos, las neuronas del cerebro. Y es que el cerebro tiene una capacidad plástica adaptativa (o maladaptativa) impresionante, ya que cada neurona (que hay unas 100 billones) lucha por conectar con otra y establecer un vínculo químico y eléctrico, para poder comunicar mensajes y desarrollar así su función para la que ha sido diseñada. Pero esto no es la neurogénesis. La neurogénesis viene en relación a la formación de nuevas neuronas una vez la persona ya es adulta. Existen zonas del cerebro capaces de generar nuevas neuronas para desarrollar funciones concretas, teniendo capacidad pues, de renovar áreas concretas del Sistema Nervioso Central.

Las áreas que hasta ahora se han encontrado hallazgos de neurogénesis, son el bulbo olfactorio, el hipocampo y la corteza cerebral. Pero cuidado, porque estas neuronas se generan a partir de otras precursoras, tipo células madre, las cuales realizan movimientos migratorios para poder producir el tipo concreto de células, que migrarán para su posterior maduración. Más adelante nos adentraremos un poco más en ese concepto.

¿Pero por qué éstas áreas tan en concreto y no otras? Pues podríamos hacer suposiciones, como por ejemplo, el bulbo olfactorio es elemental para la supervivencia como especie, o al menos durante el recorrido que llevamos andado en la historia, ya que éste recoge la información olfactiva, tan necesaria para poder evaluar los productos alimenticios que estén en buen estado y evitar precisamente intoxicaciones en su ingesta. Pensemos que el circuito neural por el que pasa dicha información, no contiene filtros, es decir, la mayoría de información que nos llega del exterior pasa por un elemento filtro clave, el tálamo, que precisamente evita que nos saturemos de información. Y no creo que sea por capricho de la naturaleza, pero el «circuito» olfactivo, no pasa por el tálamo, y por tanto, se le da una relevancia o predisposición absoluta, y es por ello que quizás tengamos que renovar neuronas cada cierto tiempo.

Por otro lado, tenemos la generación de neuronas que migran hacia el hipocampo. Ese conjunto de centros neurales encargados a grandes rasgos, de la memoria. ¿Y por qué tiene tanta relevancia la memoria? De nuevo, conjeturemos. La memoria nos da identidad, nos almacena experiencias de aprendizaje tanto como especie (para de nuevo, la supervivencia) como para el individuo, y que encima comunicamos y transmitimos a las siguientes generaciones, para que no tengan que pasar por la misma experiencia. Por ejemplo, a mi no me ha picado ninguna araña, serpiente o me ha mordido una rata, pero tanto por experiencia «genética» (de nuestros antepasados) así como de aprendizaje por otros testimonios, no me veréis «experimentando» con ellas. Dicha relevancia se la podemos atribuir a las funciones del hipocampo, claves de nuevo, para la supervivencia, y que conjeturamos que esa importancia en la neurogénesis vaya relacionada es este aspecto.

Por último, se habla de neurogénesis en la corteza cerebral, concretamente en algunas áreas asociativas (cortezas prefrontal, temporal inferior y parietal posterior), las cuales están implicadas en la conducta, así como el aprendizaje y la memoria. En nuestra supervivencia, es indiscutible la necesidad de un aprendizaje para solventar carencias físicas, como la ausencia de colmillos, garras, veneno u otras ventajas biológicas que desarrollaron otros animales en la carrera armamentística de la expresión máxima de la naturaleza, cazador y presa, y que con la evolución, han ido perfeccionando durante todo este tiempo. Nosotros aprendemos, memorizamos, transmitimos conocimiento para que otros aprendan, memoricen y hagan lo mismo, perpetuando así la supervivencia y evolución como especie.

Ahora bien, gracias a los últimos avances científicos (aprendizaje y memorización) se ha descubierto otra zona de formación de neuronas, el cuerpo estriado (1). Y es que si tenemos en cuenta las funciones de éste área cerebral, como el «almacenaje» de aprendizaje motor y algunas funciones cognitivas, conjeturamos de nuevo, que el movimiento (y su memoria) están presentes de nuevo en la supervivencia, porque la única forma de cambiar algo de nuestro mundo externo, es a través del movimiento. Sea el que sea. Me muevo por algún motivo, o hago mover algo por algún motivo. Aún así, la formación de nuevas interneuronas en esta zona todavía no están estudiadas, y poco a poco se va avanzando en este aspecto.

 

Bibliografia:

(1) Inta D, Cameron HA, Gass P. New neurons in the adult striatum: from rodents to humans. Trends Neurosci 2015 Aug 19.

(2) Lepousez G, Nissant A, Lledo PM. Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron 2015 Apr 22;86(2):387-401.

(3) Capilla-Gonzalez V, Lavell E, Quinones-Hinojosa A, Guerrero-Cazares H. Regulation of subventricular zone-derived cells migration in the adult brain. Adv Exp Med Biol 2015;853:1-21.

(4) Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 2014 Oct;94(4):991-1026.

(5) Regensburger M, Prots I, Winner B. Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast 2014;2014:454696.

 

 

Meteorología e Ictus

Meteorología e Ictus FisioAso

Hablando con nuestra neuróloga, nos comentó un dato curioso que desconocíamos por completo, al menos los profesionales que nos dedicamos a esto de la «neuro» y no tenemos la ocasión de manejar datos o trabajar en el sistema público, donde se atienden de primera mano los ingresos ocasionados por afectación de daño cerebral tipo ictus. Y es que la doctora comentaba que la incidencia de ingresos por ictus, estaba correlacionada con los cambios de presión atmosférica, considerándose pues, un factor de riesgo más, como detonante para sufrir un accidente vascular cerebral.

Si bien ahondando un poco en la bibliografía sobre este tema, los datos realmente son esclarecedores, ya que distintos estudios encuentran una correlación positiva entre ambos factores, y no sólo en un país en concreto, sino que esto se viene repitiendo en varios estudios de varios países a lo largo y ancho del planeta.

Por ejemplo, este primer estudio (1) realizado en Khanty-Mansiysk (Rusia) donde se recoge una base de datos elaborada durante 5 años, con el análisis de correlación de accidente cerebrovascular y los factores meteorológicos estándar, encontrando una correlación positiva entre la frecuencia de accidente cerebrovascular y los días de cambios en la temperatura del aire en combinación con los cambios en la presión atmosférica. Sin embargo, no hubo correlación entre ictus mortales o la severdad lesiva, con el tiempo.

Sin embargo, este estudio algo más completo (2) realizado en Japón, se examinaron los efectos de la temperatura ambiente, la presión del aire y los contaminantes de este, en las admisiones de emergencias diarias, mediante la identificación de la causa de ingreso para cada tipo de accidente cerebrovascular y enfermedad cardiovascular. Además, se tuvo en cuenta el control de las variaciones estacionales e interanuales, el día de la semana y los días festivos, los niveles de gripe y un virus respiratorio. Cada disminución 1 ° C en la temperatura media, se asoció con un aumento en el número diario de admisiones de emergencia del 7,83% para el síndrome coronario aguda e insuficiencia cardíaca, del 35,57% para la hemorragia intracerebral y un 11,71% para el infarto cerebral. Además, se observaron un aumento de las admisiones de emergencia debido a la disminución de la presión del aire de 1hPa de los días anteriores, dando como resultados, la hemorragia intracerebral del 3,25%, insuficiencia cardiaca del 3,56%.

Y si os apetece un estudio algo más Europeo, el que se desarrolló en Escocia (3) va por el mismo camino, donde se examinaron datos de 6.389 pacientes con accidente cerebrovascular agudo. Cerca de 5723 (90%) pacientes sufrieron un accidente cerebrovascular isquémico de los cuales 1943 (34%) fueron lacunares. 666 pacientes (10%) tuvieron el accidente cerebrovascular de tipo hemorrágico. Cada aumento de 1ºC de temperatura media durante las 24 horas anteriores, se asoció con un aumento del 2,1% en los ingresos con ictus isquémico. Una caída en la presión atmosférica sobre el 48 h anteriores se asoció a una mayor tasa de ingresos de ictus hemorrágicos.

Este estudio con bastante peso por la muestra analizada (4) en Japón, examinó si los eventos de emergencia, específicamente los accidentes cerebrovasculares, estaban influenciados por factores meteorológicos, basándose en los registros informáticos de los servicios de transporte médico de emergencia en una ciudad japonesa durante el período comprendido entre enero de 1992 a diciembre de 2003. Un total de 53.585 pacientes (transportados para un evento codificado como accidente cerebrovascular) se analizaron en relación a los factores meteorológicos, como la temperatura, la humedad y la presión barométrica. La temperatura ambiente media diaria y la humedad relativa media diaria mostraron un efecto negativo, estadísticamente significativo, en la incidencia de los eventos de transporte de emergencia, tanto para hombres como para mujeres. Sin embargo, la presión barométrica promedio diario no fue significativamente relacionada con estos eventos.

Por último, este estudio en Rusia otra vez (5) evidencia (pone a prueba) los efectos de la temperatura del aire, la presión barométrica y la actividad geomagnética de hospitalizaciones con infartos de miocardio y accidentes cerebrovasculares cerebrales. Se estudiaron 2.833 infartos de miocardio y accidentes cerebrovasculares 1096 cerebrales registradas en dos hospitales de Moscú entre 1992 y 2005. El número de ictus aumenta con la temperatura, la amplitud térmica diaria y la actividad geomagnética. Se observaron efectos perjudiciales sobre los trazos de baja presión y la caída de presión. Los riesgos relativos de infartos y derrames cerebrales durante las tormentas geomagnéticas fueron de 1,29 (IC 95% 1,19-1,40) y 1,25 (1,10-1,42), respectivamente. El número de ictus se duplicó durante las olas de frío. La influencia de la presión barométrica en hospitalizaciones fue relativamente mayor que la influencia de la actividad geomagnética, y la influencia de la temperatura era mayor que la influencia de la presión. Los derrames cerebrales eran más sensibles a las inclemencias del tiempo que los infartos de miocardio.

 

Bibliografía:

(1) Lebedev IA, Gilvanov VA, Akinina SA, Anishchenko LI. Meteorological risk factors of stroke. Zh Nevrol Psikhiatr Im S S Korsakova 2013;113(9 Pt 2):28-32.

(2) Hori A, Hashizume M, Tsuda Y, Tsukahara T, Nomiyama T. Effects of weather variability and air pollutants on emergency admissions for cardiovascular and cerebrovascular diseases. Int J Environ Health Res 2012;22(5):416-430.

(3) Dawson J, Weir C, Wright F, Bryden C, Aslanyan S, Lees K, et al. Associations between meteorological variables and acute stroke hospital admissions in the west of Scotland. Acta Neurol Scand 2008 Feb;117(2):85-89.

(4) Ohshige K, Hori Y, Tochikubo O, Sugiyama M. Influence of weather on emergency transport events coded as stroke: population-based study in Japan. Int J Biometeorol 2006 May;50(5):305-311.

(5) Shaposhnikov D, Revich B, Gurfinkel Y, Naumova E. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. Int J Biometeorol 2014 Jul;58(5):799-808.

La ataxia

La ataxia FisioAso

La ataxia es un trastorno del movimiento como síntoma de una alteración de alguna parte del sistema nervioso, dando como resultado una manera de caminar que se tilda de «borracho». Pero la verdad es que es una inestabilidad bastante importante tanto del equilibrio como de los movimientos voluntarios, que impiden el desarrollo normal de una vida autónoma.

Existen varios tipos de ataxia, dependiendo del foco de lesión, ya que tanto el equilibrio, como la coordinación de los movimientos, necesitan de varios elementos del Sistema Nervioso Central para controlar tales funciones tan complejas. Pero lo que tienen todas en común, es la manifestación clínica como la inseguridad de la persona por ejemplo al caminar, con un tambaleo constante, pasos desiguales y poco coordinados. Para solventar esa problemática, lo que hace el paciente es aumentar la base de sustentación, o dicho de otro modo, abrir las piernas para aguantar mejor el equilibrio, siempre sin separar los pies del suelo por miedo a caer. Además, la utilización de la vista, con la mirada al suelo, es otra característica muy común, puesto que los elementos que dan información al cerebro (aparte de la vista) para mantener el equilibrio están alterados, o simplemente el cerebelo las interpreta mal. Es por eso, que al cerrar los ojos, estos pacientes caen.

Podemos dividir la ataxia en tres grandes grupos:

Ataxia Cerebelosa: el más perjudicado en este caso es el cerebelo, encargado de coordinar movimientos alternantes rápidos, como por ejemplo, hacer el movimiento de girar las manos alternativamente palma-dorso dorso-palma. Además, ya que el cerebelo participa también en la postura, concretamente en preparar el cuerpo antes de realizar un movimiento, veremos una reducción considerable del tono muscular, o dicho de otra manera, debilidad «preparatoria». Por otro lado, como ésta coordinación afecta a todo el cuerpo, el habla también se verá tocada, con temblor a la hora de articular, fluctuaciones en el tono (a veces habla alto, otras bajo, debido al mal cierre de la cuerda vocal mal coordinada) y en el volumen.

Ataxia Vestibular: Se refiere a una lesión de un sistema hallado en el oído que controla nuestro equilibrio. La peculiaridad de éste síntoma, es que además de manifestarse muy parecido a la ataxia cerebelosa, también se acompaña de cuadros vertiginosos, es decir, que la persona tiene la sensación brutal y desproporcionada de mareo, con todo lo que conlleva eso.

Ataxia Sensorial: imaginaros que todas las sensaciones del cuerpo no os llegaran, como si estuvierais flotando por el espacio, donde realmente estás pisando el suelo, pero no lo notas. Ésta es quizás una sensación lo más parecida a lo que sienten éstas personas con dicha afectación, y de esta manera no os extrañe que la persona vaya con muchísima cautela mirando dónde pisa, cómo pisa y por qué pisa. Por eso, van lentos, precavidos, cautelosos, como si de espías o ladrones se tratara.

Neurología: 10 datos que no conocías sobre el cerebro

Neurología: 10 datos que no conocías sobre el cerebro FisioAso

Vamos a presentaros unos pequeños datos, de esos que aportan poco memorizarlos pero que son realmente interesantes, para hacernos una idea del potencial, características o funcionamiento, en este caso, del cerebro. Ésta entrada viene siendo el clásico: Sabías que…

1.- Cerebro viene de la palabra latín cerebrumy lo curioso es que significa «lo que se lleva en la cabeza», ya que sus raíces etimológicas provienen de ker (cabeza) y brum (llevar).

2.- El cerebro,representando un 7,7 % del peso corporal de un ser humano medio, consume nada más y nada menos que el 20% de aporte sanguíneo, gastando cantidad de oxígeno y glucosa. Es que algo tan importante tiene que respirar y alimentarse bien.

3.- Ya que el gasto energético del cerebro es tan alto (entre 250 y 300 kilocalorías), cuando el ser humano pasa literalmente hambre, una de las maneras extremas que tiene éste órgano para sobrevivir, es consumirse a sí mismo. Es decir, que llega a comerse.

4.- Siempre se ha dicho que hasta ahora, naces con un número exacto de neuronas, y que a medida que vas creciendo, éstas van muriendo por envejecimiento, sin que se regeneren o nazcan nuevas. Esto no es del todo cierto, hay zonas localizadas del Sistema Nervioso Central, que generan nuevas neuronas, Neurogénesis lo llaman, como en el bulbo olfactorio y en el hipocampo.

5.- Tu conectoma (conjunto de neuronas y conexiones que dan aspecto de mapa cerebral) contiene 100 billones de neuronas, y 10.000 billones de conexiones entre ellas. Se dice que supera al número de estrellas en el Universo, pero estas comparaciones son tan poéticas y tan poco demostrables… Aún así, la sensación de no poder abarcar tales números, o de insignificancia, ahí está…

6.- Barack Obama invierte 200 millones de euros al año, desde 2013, en la investigación y desarrollo de un mapa cerebral (como el Proyecto Genoma Humano hizo con los genes), donde a la cabeza de un grupo de investigadores científicos está el español Rafael Yuste, nuestro Pau Gasol de la ciencia.

7.- Nuestro cerebro, cuando da una orden simple, envía una copia de esa orden a otra zona del cerebro para generar una información (copia eferente) de que ese acto lo estás realizando tú. Es por eso, que no nos extrañamos al oírnos nuestra propia voz resonar en nuestra cabeza, no nos podemos hacer cosquillas o nos anticipamos a los movimientos que vamos a hacer. Este mecanismo se encuentra alterado en los esquizofrénicos, que curiosamente, pueden hacerse cosquillas.

8.- Nuestro cerebro opina, y nos referimos a opinar sobre hechos que siempre se entendieron como cosas que se generaban antes de que  la información llegara a éste órgano, como es el dolor. Hasta que una señal no llegue al cerebro, no se da una respuesta entendida como dolor. O hasta que el cerebro no diga, esto tiene que doler, no dolerá. De él emana la decisión de si algo duele o no duele. Por supuesto, en este equilibrio, puede haber decisiones erróneas ante hechos que no duelen (como la hiperalgesia o alodinia), o simplemente no haya un daño en el cuerpo, y aún así, el cerebro dirá que duele (como es el caso del miembro fantasma, la sensibilización central, el dolor crónico, entre otros muchos).

9.- Al cerebro se le puede engañar, y nos referimos a percibir cosas que realmente no han sucedido o no existen, como la magia, las ilusiones ópticas, las decisiones de comprar un producto generado por neuromarketing, o la decisión de votar a un partido político u otro. De hecho, en ese engaño, se basan algunas terapias que pueden favorecer la reducción del dolor o generar un movimiento, como la terapia espejo, la mano de goma, exploración de la lateralidad, entre otras.

10.- Si estás tumbado boca arriba, y elevas tus dos piernas a la vez, estando éstas rectas, tu médula espinal se desliza hasta 4 mm hacia caudal (hacia las piernas), lo que supone que el cerebro también tiene una ligera movilidad dentro de ese casco llamado cráneo, junto con la propia médula espinal.

Divisiones del Sistema Nervioso

Divisiones del Sistema Nervioso FisioAso


Queremos aportar el siguiente vídeo muy interesante, fácil de entender y básico para entender las divisiones del Sistema Nervioso, su actuación y su función, dentro de nuestro cuerpo humano. Debemos recordar que éstas divisiones no son «reales», sino son clasificaciones funcionales del Sistema Nervioso para comprender mucho mejor su intervención en nuestro organismo, qué papel desempeñan y cómo se desenvuelven, para poder optimizar el estudio de éste.

Recordemos que el Sistema Nervioso puede dividirse en tres grandes bloques, como el Sistema Nervioso Central (SNC), formado por todo el encéfalo y la médula espinal, el Sistema Nervioso Periférico (SNP), formado por los nervios espinales, y finalmente el Sistema Nervioso Autónomo (SNA), formado por otro tipo de nervios que comunican todas las vísceras, glándulas y vasos sanguíneos.

Lo curioso de éstas divisiones, es que realmente no hay una separación física o una discontinuidad entre estos tres sistemas, es decir, el encéfalo y la médula espinal están juntos, conectados, como también el resto de nervios espinales y los que conforman el SNA. Realmente la separación entre SNC y SNP es un agujero de conjunción vertebral, es una zona de paso, no una discontinuidad. Es como si la autopista A6, en su paso por el túnel del Negrón, en el Huerna, al cambiar de Comunidad Autónoma (Castilla-León a Asturias), dejara de existir un tramo de autopista para poder pasar de una región a otra.

El hecho es que ésta continuidad no es sólo anatómica (cuidado que las meninges están conectadas con las envolturas del nervio, como el perineuro, epineruo y endoneuro) o estructural, es que además existe una continuidad eléctrica, de transmisión de impulsos para poder comunicar un cerebro (por ejemplo) con la punta del dedo gordo del pie izquierdo. Esto es como si en el ejemplo anterior, la central eléctrica que ilumina la carretera del Huerna, no pudiera mandar luz al Km 35 debido a que no existe una estructura que los conectara a nivel eléctrico.

Por último, insistiendo en esa continuidad, en estos tres sistemas circulan los mismos neurotransmisores (sustancias para comunicar una neurona con la otra) excitatorios o inhibitorios, dependiendo del tipo de receptores neuronales, el tipo de mensaje que se quieran enviar o el tipo de mensaje que se quiera inhibir. Volviendo al ejemplo de la autopista, en ella circulan coches, camiones, motocicletas, dependiendo del tonelaje, velocidad o intencionalidad del viaje. Es por ello que no circulan caballos, aviones o barcos.

Para ir concluyendo, la idea de dividir el Sistema Nervioso en distintas partes para facilitar el estudio es comprensible, pero hay que tener cuidado en malinterpretarlas atribuyendo cualidades que se alejan de la realidad, y eso nos pasa mucho tanto a los estudiantes como a los profesionales que nos dedicamos al mundo de la neurología.

 

Error: Formulario de contacto no encontrado.