• 684632739 (Gijón) | 637613488 (Oviedo) | 637613488 (Avilés)

  • info@neurofuncion.com

terapia

¿Cuándo empezamos terapia de lenguaje y habla en la afasia?

¿Cuándo empezamos terapia de lenguaje y habla en la afasia? 480 320 FisioAso

Una encuesta reciente, entre los afectados por ACV, sus cuidadores y los profesionales de la salud, colocó el tratamiento de la afasia como el tercero entre las 10 principales prioridades en la investigación del ictus. Esto nos lleva a pensar no sólo en las preferencias del paciente, sino que además, en todas las de su entorno, ya que la comunicación es un elemento esencial en la calidad de vida de los afectados.

Ahora bien, la premisa arrolladora por parte de los expertos acerca de cuándo iniciar la neurorrehabilitación, tiende a ser «cuanto antes mejor», «úsalo o piérdelo», y sin embargo, en el tratamiento de la afasia, no tiene una evidencia clara sobre los tiempos de inicio de la intervención (1,2,3). Algunos pacientes están físicamente tan débiles inmediatamente después del accidente cerebrovascular que el médico puede considerar que la rehabilitación del lenguaje no es factible o incluso peligrosa en esta fase.

Sin embargo, mucho nos llama la atención la siguiente revisión acerca de los tiempos de inicio de trabajo en el lenguaje:

«Optimal timing of speech and language therapy for aphasia after stroke: more evidence needed».

En él, no acaban de asegurar cuándo es el tiempo óptimo para iniciar la rehabilitación en el lenguaje (sugiriendo que parecido al motor), ya que la variabilidad por parte de los pacientes a la hora de tolerar la terapia, o la estabilización de los síntomas en el ictus, así como la diversidad dentro de la propia afasia, dificulta considerablemente la investigación sobre el correcto inicio de las terapias.

Además, se plantean posibles errores metodológicos dentro de la misma revisión, ya que tras un ictus, existe una recuperación espontánea gracias a la neuroplasticidad cerebral, donde la reorganización de las estructuras afectadas puede influir tanto positivamente como negativamente. Por tanto, habría que plantear grupos de control (sin recibir terapia, lo que conlleva a dilemas éticos) en comparación a grupos experimentales (quienes reciben la terapia) para medir y comparar resultados.

Otra variable interesante a medir, son los entornos sociales de los propios pacientes, ya que pueden ser ricos en estimulación del lenguaje, donde podría ser posible estudiar el entorno social como una variable en los Estudios Clínicos Aleatorios, colocando al grupo de intervención en un entorno de comunicación enriquecido.

Pese a que esta revisión no deja claro cuándo es el tiempo óptimo para iniciar una terapia del lenguaje, actualmente las intervenciones suelen tender hacia la atención precoz, poniendo el foco de atención a los principios neurocientíficos de reorganización cerebral, respetando siempre la clínica del paciente y la tolerancia al trabajo cognitivo. La biología es la que és, y no se pueden acelerar procesos neurofisiológicos hasta el momento, ya sea la reabsorción del sangrado y sus productos de desecho o la reconexión neuronal, producidos por un ictus.

Para más información, consulte el artículo en el siguiente enlace: https://www.tandfonline.com/doi/full/10.1586/14737175.2015.1058161

Bibliografía:

1.- Quinn TJ, Paolucci S, Sunnerhagen KS,et al. Evidence-based stroke rehabilitation: An expanded guidance document from the European Stroke Organisation (ESO)guidelines for management of ischaemicstroke and transient ischaemic attack 2008.J Rehabil Med 2009;41(2):99-111

2.- Teasell R, Foley N, Hussein N,Speechley M. Evidence based review of stroke rehabilitation: The elements of strokerehabilitation. 16th edition. 2013. 54.Available from: http://www.ebrsr.com/evidence-review/6-elements-stroke-rehabilitation

3.- Horn SD, Dejong G, Smout RJ, et al.Stroke rehabilitation patients, practice, and outcomes: Is earlier and more aggressivet herapy better? Arch Phys Med Rehabil2005;86(12 Suppl 2):S101-14

 

Robótica y neurorehabilitación

Robótica y neurorehabilitación 2361 1270 FisioAso

Es muy común que hoy en día, los grandes centros de neurorrehabilitación, tengan maquinaria robótica en sus plantillas, y esto lo conocemos a través de las charlas de Jornadas multidisciplinares dedicadas a la neurología, donde suele haber un médico rehabilitador explicando las ventajas de contar con alta tecnología a la hora de recuperar a pacientes con afectación neurológica.

También es muy común, en Máster dedicados al ámbito de la neurología, la misma figura sanitaria suele exponer con gran pasión, las características y distinciones de las interfaz robóticas, combinadas con realidad virtual, con toda la bibliografía correspondiente acerca de los estudios realizados para justificar el enorme gasto que conlleva, la tecnología de tal calibre. Es más, estando presente tanto en las charlas de las Jornadas como en el mismo Máster, el discurso de que la tecnología sustituya a la mano de obra humana, es un paso tanto de la evolución como de la revolución,  tal y como se argumenta desde la perspectiva de la agricultura o de la misma industria, suele repetirse, aunque cada vez con menor ahínco.

Ahora bien, ¿cuáles son las ventajas y cuáles las desventajas de la utilización de la robótica en la neurorrehabilitación? Intentaremos tomar una perspectiva objetiva, aunque algo sesgada, ya que será combinada con opinión personal. Vamos a ello.

Ventajas:

  • Tal y como muestra la mayoría de estudios, así como la práctica clínica en pacientes con afectación neurológica demuestra, la intervención terapéutica temprana (3) en caso de daño cerebral, es más que positiva, una vez estabilizado el estado vital del paciente. Es por ello, que es interesante que los afectados cuenten con un sistema de rehabilitación precoz, donde la inclusión del robot a las terapias, dé una visión muy objetiva e inicie un tratamiento de movilización inmediato, con la ayuda de la desgravación mediante la sujeción de un arnés, junto con una cinta rodante, que ayudará a la persona de manera indiscutible. Ahora bien,  ¿la persona entiende para qué sirve? ¿La persona tiene miedo? ¿A la persona le gusta la tecnología? ¿La persona está preparada para que un robot la mueva? Hay que planteárselo.
  • El robot genera una repetición exacta de los movimientos a rehabilitar, lo que proporciona un feedback exacto a cada paso. Y es que la marcha perfecta puede ser generada, y el desarrollo del movimiento del robot guía a la perfección el patrón de marcha a rehabilitar. Dicen que la neurorrehabilitación se basa en la repetición y la intensidad (4) de ésta, y cuanto más se repite, más se aprende. La clave según muchos, es repetir sin repetir, es decir, repetir una acción, cambiando constantemente las condiciones tanto del entorno como del mismo movimiento. Ahora bien, ¿Y la motivacción? ¿La relevancia? ¿Le gusta lo que hace? ¿Entiende el contexto del robot como paciente afásico?… Hay que planteárselo.
  • Esa repetición exacta da un feedback preciso y concreto, lo que puede moldear tal y como queremos tanto las estructuras periféricas como la organización del Sistema Nervioso Central (5) con la tan conocida neuroplasticidad cerebral, reorganizando los patrones sensitivo-motores perdidos tras la lesión. Todo ello realizando una perfecta marcha generada y continuada por el robot, con los parámetros que ellos se incluyan en un estudio individualizado de la marcha del paciente. Ahora bien, recordemos que la neuroplasticidad dura todo el día, y a ello me refiero que la hora o hora y media que esté la persona en rehabilitación, es un porcentaje del tiempo que dura todo un día, 1/24, y la neuroplasticidad es así de caprichosa, siempre estamos aprendiendo aunque no se quiera, tanto para bien como para mal. Lo que quiero decir es que has estado 1 hora perfecta realizando una marcha, a ver cómo la realizas el resto del día, y cómo es tu entorno (ambiental y de relaciones sociales) y qué tipo de actividades desarrollas en tu día a día…
  • Muchos robots desarrollan su ejercicio activo-asistido mediante feedback visual, como realidad virtual (más coste económico), videojuegos o señales luminosas o acústicas, dando una información exacta de cómo está la marcha o el equilibrio estático, generando informes exactos. Hay que replantear de nuevo si los pacientes están preparados para ello, si les gusta o simplemente lo entienden. Por tanto, hay una selección del tipo de paciente, no todos son aptos para recibir éste tratamiento.
  • La monitorización exacta del progreso de un paciente, donde es más que interesante tanto en la clínica, como por supuesto en la investigación, con resultados objetivos y precisos. Indiscutible.
  • El humano se cansa rehabilitando, el robot no (100 repeticiones vs. 1000 repeticiones). El humano no tiene la precisión en la movilización de las extremidades inferiores durante la marcha, el robot si. El robot no se lesiona (bueno, se estropea y requiere mantenimiento), el humano si. El humano adopta posiciones no ergonómicas, el robot no. El humano tiene vacaciones, el robot no. El humano cobra un sueldo, el robot no. Efectivamente, los humanos no son máquinas, los robots si.
  • La evidencia demuestra que los pacientes, con adición de la terapia robótica a la convencional, mejoran tanto en la cadencia como en la velocidad de la marcha. (6) aunque no especifican si se mantienen en el tiempo. Y otro estudio sobre el Lokomat (7,8) acerca de la superioridad en relación a la fisioterapia convencional (que habría que analizar qué es la fisioterapia convencional, lo haremos en otra entrada que ya está en borradores) relacionada con la marcha y el test del 6 min. Walk.

Desventajas:

  • En investigación, muchos intereses de por medio para poder justificar el uso de éste tipo de robótica, lo que ello implica varios temas candentes, como el conflicto de interés en los estudios de las grandes empresas para vender el producto, el pequeño tamaño muestral de éstos (aún no mostrada la eficiencia y eficacia, ya está el producto a la calle), la inexistencia en algunos de casos controles, la falta de randomización, o la falta de evaluadores cegados. Por último, el ámbito de la aplicación de la robótica siempre es clínica, ausentándose en otros contextos (como domicilario o comunitario) donde precisamente debe traducirse la recuperación, en el día a día de la persona afecta.
  • Alto coste del producto, y es por ello que sólo tienen acceso los grandes centros de neurorrehabilitación. Por tanto, la relación coste-eficiencia-efectividad, quizás no se vea plasmada en los estudios de investigación, donde podemos discutir a ciencia cierta, el aporte del experto terapeuta vs. el experto robot, en éste tipo de relación. No es una tecnología precisamente accesible.
  • Los gustos por los robots, tecnología, videojuegos, entre otros, y su impacto emocional, contextual, biopsicosocial que puede tener en el paciente. Repetimos que no todos están preparados para recibir éste tipo de tratamiento, mientras que en las clínicas, precisamente no podemos ir seleccionando el tipo de paciente que queremos. El humano tiene que realizar una intervención terapéutica, sin condiciones, y punto.
  • La realización de una marcha automática generada por un robot es buena, ahora bien, siempre en las mismas condiciones contextuales. ¿Acaso siempre andamos en línea recta? Y ¿sobre un tapiz rodante? Si la neurorrehabilitación consiste en repetir sin repetir (cosa que no sé si estoy de acuerdo, esto da para otra entrada), ¿acaso el robot puede plantear distintas situaciones ambientales? Como por ejemplo, todas las condiciones aleatorias que se pueden dar en la calle. Y es más, tras la rehabilitación con el robot, ¿esto se traduce que en tu vida diaria desarrolles ese tipo de marcha que has entrenado? O lo que viene siendo, ¿existe una transferencia de conocimiento y condiciones de desarrollo motor en tu día a día, como viene siendo andar hacia la panadería para comprar el pan, o andar por el paso de cebra y que cambie el semáforo a rojo… ?
  • El trato. No es de extrañar que un médico que trata bien a sus pacientes tenga mayor repercusión terapéutica que uno que los ignore o simplemente preste menor atención. Y es que la rehabilitación neurológica, como todos sabemos (aunque a veces a los fisioterapeutas nos cueste algo más) debe realizarse desde una perspectiva multidisciplinar, ya así la evidencia lo demuestra, y de eso el robot no entiende, porque no sabe si un paciente tiene un problema de motivación, miedo, hemianopsia, o perceptivo. El robot sabe de parámetros, y los ejecuta, y a veces eso no llega a ser terapéutico.

Fijaros que he planteado más ventajas que desventajas, pero dichas ventajas están reconsideradas, porque no son para nada absolutas, y se pueden debatir. Pero para eso lo dejamos en los comentarios, que vuestro feedback es más que necesario, para evitar precisamente mi sesgo. Saludos y buen debate.

 

Bibliografía:

(1) Stein J. Robotics in rehabilitation: technology as destiny. Am J Phys Med Rehabil 2012 Nov;91(11 Suppl 3):S199-203.

(2) Veerbeek JM, Koolstra M, Ket JC, van Wegen EE, Kwakkel G. Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: a meta-analysis. Stroke 2011 Nov;42(11):3311-3315.

(3) DeJong G, Horn SD, Conroy B, Nichols D, Healton EB. Opening the black box of post-stroke rehabilitation: stroke rehabilitation patients, processes, and outcomes. Arch Phys Med Rehabil 2005 Dec;86(12 Suppl 2):S1-S7.

(4) Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother 2007 Oct;7(10):1417-1436.

(5)Esquenazi A, Packel A. Robotic-assisted gait training and restoration. Am J Phys Med Rehabil 2012 Nov;91(11 Suppl 3):S217-27; quiz S228-31.

(6) Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev 2011;48(4):387-416.

(7)Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair 2007 Jul-Aug;21(4):307-314.

(8) Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair 2009 Jan;23(1):5-13.

 

Estereognosia

Estereognosia 194 259 FisioAso

Este bonito palabro, significa el reconocimiento de objetos a través exclusivo del tacto, sin ayuda auxiliar de ningún otro sentido. A través de la palpación, somos capaces de saber qué objeto estoy tocando, cuáles son sus propiedades y la significancia de éste. Pero cuidado, porque no sólo reconocemos a través de las manos (que es lo primero en lo que hemos pensado), sino que solemos hacerlo a través de estructuras con mucha representación cerebral sensorial, ya que nos resulta más fácil palpar con las manos, pies, o con la boca [estereognosia bucal (1)] y labios, recordemos el homúnculo sensitivo.

En pacientes con afectación neurológica, la necesidad de explorar dicho tipo de sensibilidad (lo encontraréis por sensibilidad profunda), es básica y necesaria, porque muchas de las tareas que se plantean como ejercicios de rehabilitación, implican la capacitación de entrada de información, procesamiento de ésta a nivel cerebral (implicación cognitiva) y la consiguiente respuesta motora. Es decir, si el paciente está explorando un objeto que debe reconocer con la mano (afecta o no), los sistemas comprometidos vienen siendo las vías aferentes estimuladas por el tacto, temperatura y presión, mandando al SNC la información somatosensorial que debe ser interpretada, donde a su vez, cada pequeña exploración, necesita de una parte motora selectiva (concretamente en mano y dedos) para continuar inspeccionando el elemento.

Los profesionales que trabajamos para el movimiento del paciente con afectación neurológica necesitamos explorar la sensibilidad, porque las implicaciones en el control motor están más que demostradas, ya que para el aprendizaje de una tarea, movimiento o postura, se necesita de un feedback intrínseco (dentro del cuerpo, información de ejecución del movimiento) y extrínseco (contexto y entorno), que aportarán datos sobre la elaboración, ejecución y resultado del movimiento, de tal manera que el paciente siempre podrá ir rectificando los elementos implicados en el movimiento, a base de repetición con una significación relevante.

Así pues, en un paciente con daño cerebral , como ejemplo que planteamos, los profesionales necesitan explorar si la sensibilidad profunda está afectada en el miembro superior mediante el reconocimiento a ciegas de un objeto. Lo primero, la persona debe tener un reconocimiento visual sobre qué objetos se van a trabajar, y dependiendo de la capacidad cognitiva de éste, podemos añadir o quitar carga en éste ejercicio, ya que cuantos más objetos haya, mayor será el número de elementos a memorizar, y mayor será también la carga atencional mantenida para explorar éstos (o podemos trabajar con diferentes formas simples/complejas, objetos cotidianos o menos, más grandes o pequeños para implicación motora selectiva…). Y esto cansa, fatiga al paciente. Una vez inspeccionados los objetos a nivel visual, pasamos a un reconocimiento del lado menos afecto, para observar si conserva la capacidad de dicho reconocimiento. Si no es así, debemos ir pensando en que algo ya no funciona a nivel cognitivo. Finalmente, se le da el elemento a explorar en el lado más afecto. Es interesante medir el tiempo de reconocimiento y anotar número de fallos, ya que puede dar datos relevantes y objetivos sobre la sensibilidad profunda, que nos servirán como referencia intrasesión e intersesión.

Por otro lado, hay que tener en cuenta los elementos implicados en la estereognosia, como son los procesos cognitivos así como los estructurales. Y es que todos los que trabajamos con pacientes con ictus, a la hora de posicionar el brazo del paciente, notamos que existen cambios en el tono, tensión, rigidez… dependiendo de la colocación de una posición u otra del mismo, ya que si buscamos la elongación de la musculatura acortada por la espasticidad, el paciente puede manifestar cambios relevantes en la sensibilidad, notando menos los objetos dentro de la mano, pérdida de la movilidad selectiva de ésta (se le cierra la mano o aumenta el tono), dolor (que distrae de la exploración), convirtiéndose el movimiento en más costoso, menos armónico y económico, lo que dificulta severamente la exploración del elemento.

Debemos tener en cuenta que el envío de la información especializada en la estereognosia, pasa por todo un sistema nervioso lesionado, y que existen zonas conflictivas en todo su recorrido que se ven comprometidas por otras estructuras adyacentes (como muscultarua, hueso, túneles, ligamentos…), donde si además añadimos tensión neural que precisamente se está evadiendo por una lesión, la exploración del paciente se está realizando en vano, porque la información llega con una calidad muy mala. Está más que estudiado, que la tensión neural dificulta la conducción de impulsos (2), reduce el transporte axonal (3), la irrigación del propio nervio y libera nocicepción, y de esta manera, si ponemos en ese compromiso al paciente en una posición de tensión para la exploración, se verá mermada la capacidad de reconocimiento por el simple hecho de que la estructura no está preparada para tal propósito.

Ahora bien, puede ser interesante utilizar la prueba estereognósica como método de reevaluación al inicio de la sesión así como al final de la misma, del modo más objetivo posible, es decir, en la misma posición (mayor o menor carga de tensión neural), con el mismo número de elementos a inspeccionar, con el tiempo cronometrado como registro y con la misma dificultad y carga cognitiva. De ésta manera, tenemos un método evaluatorio intrasesión para saber si el tratamiento aplicado entre ambas exploraciones ha servido para preparar la estructura con el objetivo de una mejora del reconocimiento gracias a la optimización de la transmisión de impulsos y toda la implicación de la salud (mecánica y neurofisiológica) del nervio. Obviamente, podemos ver el registro y evolución de la misma prueba intersesión (entre sesiones), observando la evolución y complicando la tarea en caso de que sea necesario.

Por tanto y resumiendo, la estereognosia la consideramos como un elemento de la sensibilidad profunda del paciente con afección neurológica, necesaria para la significación del movimiento o tarea a ejecutar (en el control motor), como un elemento de evaluación y reevaluación objetiva y como un elemento a tratar de manera específica.

 

Bibliografía:

(1) Ahmed B, Hussain M, Yazdanie N. Oral stereognostic ability: a test of oral perception. J Coll Physicians Surg Pak 2006 Dec;16(12):794-798.

(2) Ginanneschi F, Cioncoloni D, Bigliazzi J, Bonifazi M, Lore C, Rossi A. Sensory axons excitability changes in carpal tunnel syndrome after neural mobilization. Neurol Sci 2015 Sep;36(9):1611-1615.

(3) Leafblad ND, Van Heest AE. Management of the spastic wrist and hand in cerebral palsy. J Hand Surg Am 2015 May;40(5):1035-40; quiz 1041.

(4) Singh A, Kallakuri S, Chen C, Cavanaugh JM. Structural and functional changes in nerve roots due to tension at various strains and strain rates: an in-vivo study. J Neurotrauma 2009 Apr;26(4):627-640.

 

 

 

 

Error: Formulario de contacto no encontrado.